Geodynamically Consistent Seismic Velocity Predictions
نویسنده
چکیده
A model of thermoelastic properties for a chemically homogeneous adiabatic lower mantle is calculated. Constraints provided by this model are used in convection models to study dynamics of a chemically distinct layer at the bottom of the mantle. We find that the layer must be at least 2% denser than the overlying mantle to survive for a geologically significant period of time. Realistic decrease with depth of the thermal expansivity increases layer stability but is unable to prevent it from entrainment. Seismic velocities are computed for an assumed composition by applying the thermal and compositional perturbations obtained in convection simulations to the adiabatic values. The predicted velocity jump at the top of the chemical layer is closer to the CMB in the cold regions than in the hot. The elevation of the discontinuity above CMB in the cold regions decreases with increasing thermal expansivity and increases with increasing density contrast, while in the hot regions we find that the opposite is true. If the density contrast is small, the layer may vanish under downwellings. However, whenever the layer is present in the downwelling regions, it also exists under the upwellings. For a 4% density contrast and realistic values of expansivity, we find that the layer must be more than 400 km thick on average to be consistent with the seismically observed depth of the discontinuity. A simple chemical layer cannot be used to interpret the D" discontinuity: the required change in composition is large and must be complex, since enrichment in any single mineral probably cannot provide the required impedance contrast. A simple chemical layer cannot explain the spatial intermittance of the discontinuity.
منابع مشابه
Structure and dynamics of Earth's lower mantle.
Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distin...
متن کاملA recent deep earthquake doublet in light of long-term evolution of Nazca subduction
Earthquake faulting at ~600 km depth remains puzzling. Here we present a new kinematic interpretation of two Mw7.6 earthquakes of November 24, 2015. In contrast to teleseismic analysis of this doublet, we use regional seismic data providing robust two-point source models, further validated by regional back-projection and rupture-stop analysis. The doublet represents segmented rupture of a ∼30-y...
متن کاملA physical model for seismic noise generation from sediment transport in rivers
Measuring sediment flux in rivers remains a significant problem in studies of landscape evolution. Recent studies suggest that observations of seismic noise near rivers can help provide such measurements, but the lack of models linking observed seismic quantities to sediment flux has prevented the method from being used. Here, we develop a forward model to describe the seismic noise induced by ...
متن کاملRapidly Estimated Seismic Source Parameters for the 16 September 2015
On 16 September 2015, a great (Mw 8.3) interplate thrust earthquake ruptured offshore Illapel, Chile, producing a 4.7-m local tsunami. The last major rupture in the region was a 1943 MS 7.9 event. Seismic methods for rapidly characterizing the source process, of value for tsunami warning, were applied. The source moment tensor could be obtained robustly by W-phase inversion both within minutes ...
متن کاملIdentification of SWF Sands by Elastic Inversion of Conventional 3D Seismic Data
As oil and gas exploration moves into deeper offshore areas, Shallow Water Flow (SWF) from overpressured, unconsolidated/uncemented sands becomes a high profile drilling hazard. Laboratory measurements show that SWF sands have high seismic compressional to shear velocity (Vp/Vs) ratios. Thus, elastic seismic inversion for Vp/Vs provides a quantitative identification of SWF sands, and predrill p...
متن کامل